Abstract

SUMMARY Teeth segmentation in computed tomography (CT) images is a major and challenging task for various computer assisted procedures. In this paper, we introduced a hybrid method for quantification of teeth in CT volumetric dataset inspired by our previous experiences and anatomical knowledge of teeth and jaws. In this regard, we propose a novel segmentation technique using an adaptive thresholding, morphological operations, panoramic re-sampling and variational level set algorithm. The proposed method consists of several steps as follows: first, we determine the operation region in CT slices. Second, the bony tissues are separated from other tissues by utilizing an adaptive thresholding technique based on the 3D pulses coupled neural networks (PCNN). Third, teeth tissue is classified from other bony tissues by employing panorex lines and anatomical knowledge of teeth in the jaws. In this case, the panorex lines are estimated using Otsu thresholding and mathematical morphology operators. Then, the proposed method is followed by calculating the orthogonal lines corresponding to panorex lines and panoramic re-sampling of the dataset. Separation of upper and lower jaws and initial segmentation of teeth are performed by employing the integral projections of the panoramic dataset. Based the above mentioned procedures an initial mask for each tooth is obtained. Finally, we utilize the initial mask of teeth and apply a variational level set to refine initial teeth boundaries to final contour. In the last step a surface rendering algorithm known as marching cubes (MC) is applied to volumetric visualization. The proposed algorithm was evaluated in the presence of 30 cases. Segmented images were compared with manually outlined contours. We compared the performance of segmentation method using ROC analysis of the thresholding, watershed and our previous works. The proposed method performed best. Also, our algorithm has the advan

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.