Abstract

In this paper a hybrid model is introduced that constructs a broadband room impulse response using a geometrical (image source method) and a statistical method (acoustic diffusion equation) for the high-frequency range, supported by a wave-based method (time-domain discontinuous Galerkin method) for the low-frequency range. A crucial element concerns the construction of the high-frequency impulse response where a transition from a predominantly specular (image source) to a predominantly diffuse sound-field (diffusion equation) is required. To achieve this transition an analytical envelope is introduced. A key factor is the room-averaged scattering coefficient which accounts for all scattering behavior of the room and determines the speed of transition from a specular to a non-specular sound-field. To evaluate its performance, the model is compared to a broadband wave-based solver for two reference scenarios. The hybrid model shows promising results in terms of reverberation time (T20), center time (Ts) and bass-ratio (BR). Aspects such as the used geometrical complexity, the ‘room-averaged’ scattering coefficients, and other model simplifications and assumptions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.