Abstract

With increasing environmental concerns, limited oil reserves and governmental incentives, installation of photovoltaic (PV) systems have gained substantial momentum in smart electric distribution systems (EDS), which is considered to be a great success. That said, widespread integration of these PV units, comes with uncertainty issues that puts the flexibility of the system at stake. In this regard, local district heating systems (DHS) are considered to be an effective tool in enhancing the flexibility of the power system on account of their high thermal inertia. In this study, we propose hybrid robust (RO)- stochastic programming (SP) optimization framework for commitment scheduling of distributed generation units and local DHS considering high penetration of PV units. Furthermore, the impact of flexible thermal and electrical loads on total operational cost and overall flexibility of the system is evaluated. The SP is utilized to deal obscurity of solar radiation, and RO is utilized to handle price uncertainties. The uncertainty management via the electrical storage system is also scrutinized. The results are evaluated by different cases studies implemented on an integrated IEEE 33-bus EDS and an 8-node DHS. Eventually, the mixed integer linear problem is solved with a standard CPLEX solver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.