Abstract
Mixture theory is a general framework that has been used to model mixtures of solid, fluid, and solute constituents, leading to significant advances in modeling the mechanics of biological tissues and cells. Though versatile and applicable to a wide range of problems in biomechanics and biophysics, standard multiphasic mixture frameworks incorporate neither dynamics of viscous fluids nor fluid compressibility, both of which facilitate the finite element implementation of computational fluid dynamics solvers. This study formulates governing equations for reactive multiphasic mixtures where the interstitial fluid has a solvent which is viscous and compressible. This hybrid reactive multiphasic framework uses state variables that include the deformation gradient of the porous solid matrix, the volumetric strain and rate of deformation of the solvent, the solute concentrations, and the relative velocities between the various constituents. Unlike standard formulations which employ a Lagrange multiplier to model fluid pressure, this framework requires the formulation of a function of state for the pressure, which depends on solvent volumetric strain and solute concentrations. Under isothermal conditions the formulation shows that the solvent volumetric strain remains continuous across interfaces between hybrid multiphasic domains. Apart from the Lagrange multiplier-state function distinction for the fluid pressure, and the ability to accommodate viscous fluid dynamics, this hybrid multiphasic framework remains fully consistent with standard multiphasic formulations previously employed in biomechanics. With these additional features, the hybrid multiphasic mixture theory makes it possible to address a wider range of problems that are important in biomechanics and mechanobiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.