Abstract

This paper represents Part 2 of the parallel paper Part 1, where the strong form hybrid RBF-FD method was developed for solving thermo-elasto-plastic problems. It addresses the industrial application of this novel meshless method to steel bars cooling on a cooling bed (CB) where the formation of residual stress is of primary interest. The study investigates the impact of the distance between the bars and the distance to the heat shield above the CB on radiative heat fluxes and, consequently, on thermo-mechanical response. The thermal model is solved on bars cross-section with a RBF-FD method where augmented polyharmonic splines are used for the local approximation. View factors, computed with a Monte-Carlo method, are included in radiative heat fluxes. The thermal solution is incrementally applied on a mechanical model that assumes a generalised plane strain state and captures bars bending. The study employs a hybrid RBF-FD method to resolve a nonlinear discontinuous mechanical problem successfully. The simulation of the process shows how different process parameters influence the thermo-mechanical response of the bars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call