Abstract
Tensor networks are emerging architectures for implementing quantum classification models. The branching multi-scale entanglement renormalization ansatz (BMERA) is a tensor network known for its enhanced entanglement properties. This paper introduces a hybrid quantum-classical classification model based on BMERA and explores the correlation between circuit layout, expressiveness, and classification accuracy. Additionally, we present an autodifferentiation method for computing the cost function gradient, which serves as a viable option for other hybrid quantum-classical models. Through numerical experiments, we demonstrate the accuracy and robustness of our classification model in tasks such as image recognition and cluster excitation discrimination, offering a novel approach for designing quantum classification models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.