Abstract
In this work we introduce a hybrid ab initio-classical simulation methodology designed to incorporate the chemistry into the description of phenomena that, intrinsically, require very large systems to be properly described. This hybrid approach allows us to conduct large-scale atomistic simulations with a simple classical potential (embedded atom method (EAM), for instance) while simultaneously using a more accurate ab initio approach for critical embedded regions. The coupling is made through shared atomic shells where the two atomistic modeling approaches are relaxed in an iterative, self-consistent manner. The magnitude of the incompatibility forces arising in the shared shell is analyzed, and possible terminations for the embedded region are discussed, as a way to reduce such forces. As a test case, the formation energy of a single vacancy in aluminum at different distances from an edge dislocation is studied. Results obtained using the hybrid approach are compared to those obtained using classical methods alone, and the range of validity for the classical approach is evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.