Abstract

There is an increasing need to describe cyanobacteria blooms since some cyanobacteria produce toxins termed cyanotoxins and, as a result, anticipate its presence is a matter of importance to prevent risks. Cyanobacteria blooms occur frequently and globally in water bodies, and they are a major concern in terms of their effects on other species such as plants, fish and other microorganisms, but especially by the possible acute and chronic effects on human health due to the potential danger from cyanobacterial toxins produced by some of them in recreational or drinking waters. Therefore, the aim of this study is to build a cyanotoxin diagnostic model by using support vector machines (SVMs) in combination with the particle swarm optimization (PSO) technique from cyanobacterial concentrations determined experimentally in the Trasona reservoir (recreational reservoir used as a high performance training center of canoeing in the Northern Spain). The Trasona reservoir is near Aviles estuary and after a short tour, the brackish waters of the Aviles estuary empty into the Cantabrian sea. This optimization technique involves kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, cyanotoxin contents have been predicted here by using the hybrid PSO–SVM-based model from the remaining measured water quality parameters (input variables) in the Trasona reservoir (Northern Spain) with success. In other words, the results of the present study are two-fold. In the first place, the significance of each biological and physical–chemical variable on the cyanotoxin content in the reservoir is presented through the model. Second, a predictive model able to forecast the possible presence of cyanotoxins is obtained. The agreement of the PSO–SVM-based model with experimental data confirmed its good performance. Finally, conclusions of this innovative research work are exposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.