Abstract
Prognostic of the proton-exchange membrane fuel cell can effectively extend the fuel cell lifespan, which can contribute to its large-scale commercialization. In this article, a hybrid prognostic approach is proposed to predict the fuel cell output voltage and other aging parameters that can reflect the stack’s internal degradation. During the training stage, the prognostic parameters are obtained by using the extended Kalman filter (EKF). Besides, the fuel cell output voltage is used to train the long short-term memory (LSTM) recurrent neural network. During the prediction stage, the hybrid EKF and LSTM method will predict the output voltage and aging parameters, and the degradation can be predicted under dynamic conditions. The proposed method is validated by experimental tests under static, quasi-dynamic, and dynamic conditions. Results indicate that the hybrid method can accurately predict the degradation trend of fuel cell voltage and aging parameters. The RMSE of the method is less than 0.0110, 0.0262, and 0.0317 under static, quasi-dynamic, and dynamic conditions, respectively, which are smaller than the conventional model-based methods or data-driven methods. Furthermore, the hybrid method can provide more detailed information for prognostic decision-making and better prolong the fuel cell lifespan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Transportation Electrification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.