Abstract

Person tracking is an important topic in ambient living systems as well as in computer vision. In particular, detecting a person from a ceiling-mounted camera is a challenge since the person's appearance is very different from the top or from the side view, and the shape of the person changes significantly when moving around the room. This article presents a novel approach for a real-time person tracking system based on particle filters with input from different visual streams. A new architecture is developed that integrates different vision streams by means of a Sigma-Pi-like network. Moreover, a short-term memory mechanism is modeled to enhance the robustness of the tracking system. Based on this architecture, the system can start localizing a person with several cues and learn the features of other cues online. The experimental results show that robust real-time person tracking can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.