Abstract

The rapid proliferation of smart mobile devices has significantly enhanced the popularization of the cyber-physical social network, where users actively publish data with sensitive information. Adversaries can easily obtain these data and launch continuous attacks to breach privacy. However, existing works only focus on either location privacy or identity privacy with a static adversary. This results in privacy leakage and possible further damage. Motivated by this, we propose a hybrid privacy-preserving scheme, which considers both location and identity privacy against a dynamic adversary. We study the privacy protection problem as the tradeoff between the users aiming at maximizing data utility with high-level privacy protection while adversaries possessing the opposite goal. We first establish a game-based Markov decision process model, in which the user and the adversary are regarded as two players in a dynamic multistage zero-sum game. To acquire the best strategy for users, we employ a modified state-action-reward-state-action reinforcement learning algorithm. Iteration times decrease because of cardinality reduction from $n$ to 2, which accelerates the convergence process. Our extensive experiments on real-world data sets demonstrate the efficiency and feasibility of the propose method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.