Abstract
PurposeDespite better accessibility and flexibility, peer-to-peer (P2P) lending has suffered from excessive credit risks, which may cause significant losses to the lenders and even lead to the collapse of P2P platforms. The purpose of this research is to construct a hybrid predictive framework that integrates classification, feature selection, and data balance algorithms to cope with the high-dimensional and imbalanced nature of P2P credit data.Design/methodology/approachAn improved synthetic minority over-sampling technique (IMSMOTE) is developed to incorporate the randomness and probability into the traditional synthetic minority over-sampling technique (SMOTE) to enhance the quality of synthetic samples and the controllability of synthetic processes. IMSMOTE is then implemented along with the grey relational clustering (GRC) and the support vector machine (SVM) to facilitate a comprehensive assessment of the P2P credit risks. To enhance the associativity and functionality of the algorithm, a dynamic selection approach is integrated with GRC and then fed in the SVM's process of parameter adaptive adjustment to select the optimal critical value. A quantitative model is constructed to recognize key criteria via multidimensional representativeness.FindingsA series of experiments based on real-world P2P data from Prosper Funding LLC demonstrates that our proposed model outperforms other existing approaches. It is also confirmed that the grey-based GRC approach with dynamic selection succeeds in reducing data dimensions, selecting a critical value, identifying key criteria, and IMSMOTE can efficiently handle the imbalanced data.Originality/valueThe grey-based machine-learning framework proposed in this work can be practically implemented by P2P platforms in predicting the borrowers' credit risks. The dynamic selection approach makes the first attempt in the literature to select a critical value and indicate key criteria in a dynamic, visual and quantitative manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Grey Systems: Theory and Application
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.