Abstract
With the increase in global shipping volumes and the complexity of maritime transport systems, vessel trajectory prediction serves an important tool in improving maritime safety. However, most existing vessel trajectory prediction methods focus on a single feature and unable fuse high-dimensional features. To solve these problems, CNN-GRU model with a hybrid attention mechanism (AM) is proposed based on Automatic Identification System (AIS) data. First convolutional neural network (CNN) is proposed to extract the spatio-temporal information of the trajectory data. Then a gated recurrent unit (GRU) is designed to extract the temporal relationship of the trajectories. Finally, AM is introduced to learn the deep-level features and predict the vessel trajectories. To validate the effectiveness of the model, experiments are conducted on three real AIS datasets. In comparison with other models, the method has a high trajectory prediction accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.