Abstract

A hybrid power series and artificial bee colony algorithm (PS-ABC) method is applied to solve a system of nonlinear differential equations arising from the distributed parameter model of multiwalled carbon nanotube (MWCNT) cantilevers in the vicinity of thin and thick graphite sheets subject to intermolecular forces. The intermolecular forces are modeled using van der Waals forces. A trial solution of the differential equation is defined as sum of two polynomial parts. The first part satisfies the boundary conditions and does contain two adjustable parameters. The second part is constructed as not to affect the boundary conditions, which involves adjustable parameters. The ABC method is applied to find adjustable parameters of trial solution (in first and second part). The obtained results are compared with numerical results as well as analytical solutions those reported in the literature. The results of the presented method represent a remarkable accuracy in comparison with numerical results. The minimum initial gap and the detachment length of the actuator that does not stick to the substrate due to the intermolecular forces, as important parameters in pull-in instability of MWCNT actuator, are evaluated by obtained power series.

Highlights

  • Multiwalled carbon nanotubes (MWCNTs) have attracted considerable attention among other nanomaterials because of the potential advantages on markedly improved stiffness, strength, and elimination of main failure mechanism [1]

  • An integration of power series and artificial bee colony optimization method has been utilized in order to obtain a solution for buckling of MWCNT cantilevers subject to small number of graphite layers

  • The governing differential equation is forth order and highly nonlinear due to the inherent of the van der Waals and electrostatic interactions

Read more

Summary

Introduction

Multiwalled carbon nanotubes (MWCNTs) have attracted considerable attention among other nanomaterials because of the potential advantages on markedly improved stiffness, strength, and elimination of main failure mechanism [1]. These novel materials can usually be visualized as nanoscale concentric cylinders rolled up by graphene sheets. The unusual properties of MWCNTs have motivated worldwide engineers to explore their applications in different fields of science [4]. The repeatable transformation between the buckled state and normal state of CNTs produces good potential applications to create devices such as nanotransistors [5], nano-valve, and so forth, [6]. With recent growth in nanotechnology, MWCNTs are increasingly used in developing atomic force microscope (AFM) probes [1, 3, 7, 8] and nanoelectromechanical system (NEMS) switches [9,10,11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call