Abstract

In this paper, a hybrid photonic-plasmonic resonator is proposed. The device consists of a partially encapsulated 1D photonic crystal waveguide and a plasmonic nanoparticle to yield high radiation efficiency for integrated photonic platforms, owing to a high Q-factor and a small mode volume. The design of the resonator is accomplished in two consecutive steps: first of all, a partially encapsulated photonic crystal nanobeam with a robust mechanical stability and a high-Q factor is prepared; secondly, a plasmonic nanoparticle is placed on the surface of the nanobeam to interact the optical mode with the localized surface plasmons of the gold nanoparticle which is being present in the vicinity of the radiating dipole. Strongly enhanced electromagnetic field, regenerated through the optical mode field inside the hybrid resonator, enables to reduce the optical mode volume of the device and significantly enhance the Purcell factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.