Abstract
AbstractA hybrid phase field multiple relaxation time lattice Boltzmann method (LBM) is presented in this paper for simulation of multiphase flows with large density contrast. In the present method, the flow field is solved by a lattice Boltzmann equation. Concurrently, the interface of two fluids is captured by solving the macroscopic Cahn‐Hilliard equation using the upwind scheme. To be specific, for simulation of the flow field, an lattice Boltzmann equation (LBE) model developed in Shao et al. (Physical Review E, 89 (2014), 033309) for consideration of density contrast in the momentum equation is used. Moreover, in the present work, the multiple relaxation time collision operator is applied to this LBE to enable simulation of problems with large viscosity contrast or high Reynolds number. For the interface capturing, instead of solving another set of LBE as in many phase field LBMs, the macroscopic Cahn‐Hilliard equation is directly solved by using a weighted essentially non‐oscillatory scheme. In this way, the present hybrid phase field LBM shares full advantages of the phase field LBM while enhancing numerical stability. The ability of the present method to simulate multiphase flow problems with large density contrast is demonstrated by several numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.