Abstract

Lithium-ion batteries (LIBs) of high energy density and light-weight design, find wide applications in electronic devices and systems. Degradation mechanisms that caused by lithiation is a main challenging problem for LIBs with high capacity electrodes like silicon (Si), which eventually can reduce the lifetime of batteries. In this paper, a hybrid phase field model (PFM) is proposed to study the fracture behavior of LIB electrodes. The model considers the coupling effects between lithium (Li) -ion diffusion process, stress evolution and crack propagation. Also, the dependency of Elastic properties on the concentration magnitude of Li-ion is considered. A numerical implementation based on a MATLAB finite element (FE) code is elaborated. Then, the proposed hybrid PF approach is applied to a Nanowire (NW) Si electrode particle. Numerical results show that the hybrid model shows less tendency to crack growth than the isotropic model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.