Abstract
As one of the most popular supply chain management problems, the Vehicle Routing Problem (VRP) has been thoroughly studied in the last decades, most of these studies focus on deterministic problem where the customer demands are known in advance. But the Vehicle Routing Problem with Stochastic Demands (VRPSD) has not received enough consideration. In the VRPSD, the vehicle does not know the customer demands until the vehicle arrive to them. This paper use a hybrid algorithm for solving VRPSD, the hybrid algorithm based on Particle Swarm Optimization (PSO) Algorithm, combines a Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, and Variable Neighborhood Search (VNS) algorithm. A real number encoding method is designed to build a suitable mapping between solutions of problem and particles in PSO. A number of computational studies, along with comparisons with other existing algorithms, showed that the proposed hybrid algorithm is a feasible and effective approach for Vehicle Routing Problem with Stochastic Demands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.