Abstract
A novel and efficient method combining chaos particle swarm optimization (CPSO) and discrete particle swarm optimization (DPSO) is proposed to optimize the topology and connection weights of multilayer feed-forward artificial neural network (ANN) simultaneously. In the proposed algorithm, the topology of neural network is optimized by DPSO and connection weights are trained by CPSO to search the; global optimal ANN structure and connectivity. The proposed algorithm is successfully applied to fault diagnosis, able to eliminate some bad effects on the diagnosis capacity of network introduced by redundant structure of ANN. Compared with genetic algorithm (GA), the proposed method shows its superiority on convergence property and efficiency in training ANN. It is validated by the good diagnosis results of experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.