Abstract
In this paper we present a hybrid algorithm comprised of differential evolution, coupled with the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton optimization algorithm, for the purpose of identifying a broad range of (meta)stable TinO2n nanoparticles, asan example system, described by Buckingham interatomic potential. The potential and its gradient are modified to be piece-wise continuous to enable use of these continuous-domain, unconstrained algorithms, thereby improving compatibility. To measure computational effectiveness a regression on known structures is used. This approach defines effectiveness as the ability of an algorithm to produce a set of structures whose energy distribution follows the regression as the number of TinO2n increases such that the shape of the distribution is consistent with the algorithm’s stated goals. Our calculation demonstrates that the hybrid algorithm finds global minimum configurations more effectively than the differential evolution algorithms, widely employed in the field of materials science. Specifically, the hybrid algorithm is shown to reproduce the global minimum energy structures reported in the literature up to n=5, and retains good agreement with the regression up to n=25. For 25<n<100, where literature structures are unavailable, the hybrid effectively obtains structures that are in lower energies per TiO2 unit as the system size increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.