Abstract
The paper aims to solve the problem of multi-agent path planning in complex environment using optimization algorithm. To address the issue of local optimum and premature convergence, a new method is proposed based on the whale optimization algorithm, combining the chaotic initialization, the reverse search and the differential evolution methods. It is theoretically proved that this algorithm is globally convergent in probability. When applied to path planning problems, the proposed optimization algorithm can effectively find a globally optimal and smoother path. Through simulation experiments with multi-UAVs, it is demonstrated that the proposed algorithm has better performance than the state-of-the-art methods in environment with both static and dynamic obstacles, reflecting the global convergence and robustness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.