Abstract
In this paper, a hybrid control system called as backstepping adaptive fuzzy control system, which integrates nominal and compensation controller is developed for autonomous quadrotor helicopter with inherent time-varying disturbance. In this hybrid control system, the nominal controller based on backstepping technique is the main controller, and the compensation controller containing a fuzzy control approach is used to eliminate the effect of uncertainties caused by external disturbance. In addition, in order to relax the requirement of prior knowledge on the bound of external disturbance, an online adaptation law is derived. Asymptotical stability of the closed-loop control system is analytically proven via the Lyapunov theorem. For the problem of determining the backstepping control parameters, particle swarm optimization algorithm has been employed. Finally, the designed controller is experimentally evaluated on a quadrotor simulation environment to demonstrate the effectiveness and merits of the theoretical development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.