Abstract

In this research, a hybrid of surrogate model and Multi-island genetic algorithm (MIGA) is proposed for optimization and compensation of steady-state flow force on water hydraulic high-speed on-off valve (HSV) driven by voice coil motor. Firstly, a dynamic model on the spool of HSV is established, and the effects of spool displacement, spool half-cone angle, valve stem diameter and inlet pressure on the steady-state flow force of HSV are analyzed through the CFD simulation. Secondly, a quadratic response surface model is set up based on design of experiment (DOE) to analyze interactions of key parameters on steady-state flow force. MIGA is proposed to optimise the structural parameters of HSV, and the optimization results are analyzed and verified by CFD simulations. Simulation results demonstrate that the steady-state flow force is reduced significantly. Finally, the steady-state flow force in the optimized structure of HSV is also verified experimentally. The experiment results exhibit that the optimized spool can compensate about 71% for the steady-state flow force, then reduce about 15% the energy consumption of HSV. This research will provide the guide for the design and engineering application of HSV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.