Abstract

<span>Cross-site scripting (XSS) is today one of the biggest threatthat could targeting the Web application. Based on study published by the open web applications security project (OWASP), XSS vulnerability has been present among the TOP 10 Web application vulnerabilities.Still,an important security-related issue remains how to effectively protect web applications from XSS attacks.In first part of this paper, a method for detecting XSS attack was proposed by combining </span><span lang="EN-GB">convolutional</span><span> neural network (CNN) with long short term memories<strong> (</strong>LSTM), Initially, pre-processing was applied to XSS Data Set by decoding, generalization and tokanization, and then word2vec was applied to convert words into word vectors in XSS payloads. And then we use the combination CNN with LSTM to train and test word vectors to produce a model that can be used in a web application. Based on the obtaned results, it is observed that the proposed model achevied an excellent result with accuracy of 99.4%.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.