Abstract

This paper presents a coupling method of the finite element method and the boundary element method to compute the transmembrane potential (TMP) of an erythrocyte in a low-frequency electric field. We compute an in vitro erythrocyte's TMP induced by external electric fields by this hybrid method. It takes advantage of the homogeneous characteristics from both intracellular region and extracellular region. Moreover, we may use a fine three-dimensional (3-D) mesh around the thin membrane and avoid 3-D meshes in other regions. Numerical results of a spherical cell show that the hybrid method is accurate. The computed threshold of the applied electric field for membrane electric breakdown agrees well with those experimental results. Numerical results can also guide us to locate the maximum induced TMP on the erythrocyte membrane in various electric fields. Some further applications of the hybrid method are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.