Abstract

A hybrid neuro-fuzzy control strategy and its corresponding rule generating approach is proposed. According to this approach, the fuzzy control rules can be generated automatically via fuzzy inputs, and then the appropriate control action can be deduced efficiently by a simplified fuzzy inference engine. By combining the use of an incremental PI algorithm and a positional PD algorithm, a PID fuzzy control strategy can be implemented simply from two input variables. It results in the number of control rules being significantly reduced without decreasing the control performance. The control parameters can be self-tuned by introducing a single neuron together with a modified back-propagation learning algorithm. Simulation results show that the proposed fuzzy controller is able to control unknown processes and provide good performance. Compared to traditional self-organising and neural-network-based fuzzy controllers, this method has simpler control algorithms and less computational burden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.