Abstract

Managed pressure drilling (MPD) is an essential technology for safe and efficient drilling in deep high-temperature and high-pressure formations with narrow safety pressure windows. However, the complex conditions in deep wells make the mechanism of multiphase flow in drilling annulus complicated and increase the difficulty for accurate prediction of bottomhole pressure (BHP). Recently, an increasing volume of research shows that intelligent technology is an efficient means of accurately predicting BHP. However, few studies have focused on the temporal properties and variation mechanism of BHP. In this paper, hybrid neural network prediction models based on the multi-branch parallel are established by combining the different advantages of back propagation (BP), long short-term memory (LSTM), and a one-dimensional convolutional neural network (1DCNN) model. The results show that the relative error of the best model is about 70% lower than the optimal single intelligent model. Preliminary experimental results reveal that the hybrid models combine the advantages of different single models, which is more accurate and robust for extracting the temporal features of MWD. Finally, based on the trend analysis, the validity of the hybrid model is further verified. This study provides a reference for solving the problem of optimizing temporal characteristics and guidance for fine pressure control in complex formations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.