Abstract
A novel identification technique for lumped models of general distributed circuits (i.e. microwave transmission lines, monolithic integrated circuits and filters) is presented. The approach is based on a hybrid neural network having based on Multi-valued neurons network with a modified layer and learning process, whose convergence allows the validation of the circuit approximated lumped model. The modified layer is generated by symbolic analysis of the model under exam. The inputs of the network are geometrical parameters and the neural network output represents the lumped circuit parameter estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.