Abstract

To achieve burdening process optimization of copper strips effectively, a nonlinear constrained multi-objective model is established on the principle of the actual burdening. The problem is formulated with two objectives of minimizing the total cost of raw materials and maximizing the amount of waste material thrown into melting furnace. In this paper, a novel approach called “hybrid multi-objective artificial bee colony” (HMOABC) to solve this model is proposed. The HMOABC algorithm is new swarm intelligence based multi-objective optimization technique inspired by the intelligent foraging behavior of honey bees, summation of normalized objective values and diversified selection (SNOV-DS) and nondominated sorting approach. Two test examples were studied and the performance of HMOABC is evaluated in comparison with other nature inspired techniques which includes nondominated sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization (MOPSO). The numerical results demonstrate HMOABC approach is a powerful search and optimization technique for burdening optimization of copper strips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.