Abstract
Feature selection method has become the focus of research in the area of engineering data processing where there exists a large amount of high-dimensional data from the high-frequency acquisition system. For high-dimensional data processing, engineers often resort to feature extraction methods and statistical theories to convert the original features into new features. However, the converted data always lose the engineering meaning of the original features and the choice and use of conversion methods are challenging. In this paper, a hybrid feature selection model is presented to select the most significant input features from all potentially relevant features. The algorithm combines a filter model with a wrapper model. In the filter model, four variable ranking methods are used to pre-rank the candidate features. These four methods including Pearson correlation coefficient, relief algorithm, Fisher score and class separability, measure features from various angles, which leads to different ranking results. Therefore, a weighted voting scheme is introduced to re-rank features based on the degree of significance of the four methods on the classification error rate of radial basis function (RBF) classifier. In wrapper model, a binary search (BS) method and a sequential backward search (SBS) method are utilized to minimize the number of relevant features when promising to keep the classification error rate of RBF classifier below a given threshold. To demonstrate the potential of applying the method to large-scale engineering data processing, a case study is conducted.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.