Abstract
In north India (about 30,000 km2 area), October–November months witness crop residue burning (CRB). This study aims to assess the impact of CRB emissions on PM2.5 and secondary aerosol (SA) at distances far from the sources. Chemical transport model, WRF-Chem (with chemical mechanisms, RADM2 and MADE/SORGAM), was applied to a domain of 840 × 840 km2 (centered around Delhi) with inputs of emissions of anthropogenic sources of EDGAR-HTAP and fire inventory from the National Centre for Atmospheric Research, USA. In parallel, measurements of PM2.5 and its constituents, CO, and NO2 were undertaken in Delhi and Kanpur. The model underestimated PM2.5 and showed poor predictions (r < 0.15) with insignificant formation of secondary organic aerosol (SOA) (< 1% in PM2.5). To improve the model, a linear regression-based hybrid model (HM) was developed that utilized the mechanistic processes of WRF-Chem and observed levels of PM2.5, CO and NO2. The HM performed adequately at multiple sites in Delhi (r = 0.19–0.47) and Kanpur (r = 0.38–0.43). The contribution of CRB to PM2.5 was at 31 ± 16% (in 232 ± 36 μg/m3) in Delhi and 21 ± 15% (in 233 ± 38 μg/m3) in Kanpur. The contribution of SOA in CRB-contributed PM2.5 was 18 ± 9% (Delhi) and 29 ± 21% (Kanpur).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.