Abstract

Abstract We suggest a hybrid model for neutron star matter to discuss the hyperon puzzle inherent in the 2.0 M$_{\odot}$ of the neutron star. For the nucleon–nucleon ($NN$) interaction, we employ the Skyrme–Hartree–Fock approach based on various Skyrme interaction parameter sets, and take the Brueckner–Hartree–Fock approach for the interactions related to hyperons. For the many-body interactions including hyperons, we make use of the multi-pomeron-exchange model, whose parameters have been adjusted to the data deduced from various hypernuclei properties. For clear understanding of the physics in the hybrid model, we discuss fractional functions of related particles, symmetry energies, and chemical potentials in dense matter. Finally, we investigate the equations of state and mass–radius relation of neutron stars, and show that the hybrid model can properly describe the 2.0 M$_{\odot}$ neutron star mass data with the many-body interaction employed in the hybrid model. Recent tidal deformability data from the gravitational wave observation are also compared to our calculations, especially in terms of the neutron skin of $^{208}$Pb and nuclear incompressibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.