Abstract

Renewable energy sources are being actively penetrated in the global energy sector, with the main growth being achieved by new photovoltaic power stations. At the same time, the influence of photovoltaic power stations on the operation of power systems is known. This is primarily due to the inconstancy of the weather, which leads to a decrease in the output of each specific photovoltaic panel and power station as a whole. To study the effect of partial shading of photovoltaic panels on the parameters of its operation, various models of the current-voltage characteristics of photovoltaic cells are used in the world, while detailed two-diode models show the best results. The use of detailed models allows to get complete information about the processes in a variety of photovoltaic panels of a power station, as well as other elements of it, such as a voltage converter. This makes it possible to assess the impact of these processes on the external power system. However, for detailed modelling of large photovoltaic power stations as part of power systems, it is necessary to use powerful software and hardware systems. Such systems include the Hybrid real-time power system simulator. This simulator is a multiprocessor installation that provides a solution to the aggregate model of the power system through the use of three approaches to modelling: digital, analogue and physical. The article presents the results of experimental studies of software and hardware tools for modelling a photovoltaic power station, developed on the basis of a hybrid approach to modelling electric power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call