Abstract

Time plays an essential role in many biological systems, especially in cell cycle. Many models of biological systems rely on differential equations, but parameter identification is an obstacle to use differential frameworks. In this paper, we present a new hybrid modeling framework that extends René Thomas' discrete modeling. The core idea is to associate with each qualitative state "celerities" allowing us to compute the time spent in each state. This hybrid framework is illustrated by building a 5-variable model of the mammalian cell cycle. Its parameters are determined by applying formal methods on the underlying discrete model and by constraining parameters using timing observations on the cell cycle. This first hybrid model presents the most important known behaviors of the cell cycle, including quiescent phase and endoreplication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.