Abstract

A hybrid fluid Particle in Cell–Monte Carlo Collision (PiC–MCC) model is presented to study the effect of secondary electron emission on the plasma immersion ion implantation process under different pulse rise time. The model describes the temporal evolution of various parameters of plasma such as ion density, ion velocity, secondary electron density, and secondary electron current for different rise times. A 3D–3 V PiC–MCC model is developed to simulate the secondary electrons which are emitted from the sample surface while the plasma ions and electrons are treated using a 1D fluid model. The simulation results indicate that the secondary electron density and secondary electron current increase as the rise time decreases. The main differences between the results for different rise times are found during the initial phase of the pulse. The results are explained through studying the fundamental parameters of plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call