Abstract

The ongoing transition from batch to continuous manufacturing offers both challenges and opportunities in the field of oral solid dosage form production. In turn, Process Analytical Technology (PAT) offers a path towards the successful deployment of continuous tablet manufacturing in rotary tablet presses. One promising PAT tool for this endeavour is the NIR-derived potency measurement. However, the high degree of noise in the data may hamper the extraction of useful information. For this reason, this work focused on the implementation of an adaptive Kalman filter algorithm that incorporates and reconciles the potency prediction given by one or more NIR probes with those of a semi-mechanistic compartmental model developed for the application at hand. This approach allowed for more robust concentration estimations. Furthermore, it was observed that potency levels in multiple locations in the studied tablet press (including those in the finished tablets) could be appropriately inferred using a single in-line measurement data stream. This methodology thus opens the door to advanced process control applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call