Abstract

A hybrid plasma model is utilized for the simulation of inductively coupled plasmas (ICPs). It consists of a plasma fluid model coupling fluid with Maxwell’s equations and a Monte Carlo (MC) particle tracing model utilized for the calculation of the ion mobility in high electrostatic fields (sheaths). The model is applied to low pressure Argon plasma in the gaseous electronics conference (GEC) reference cell. Following measurements of electron energy distribution function (EEDF) in low pressure ICPs, a three-temperature EEDF is considered; it is formulated with a generalized equation and depends on the local plasma potential. The use of a predefined formula for the EEDF entails a low computational cost: All parameters affected by the EEDF are calculated as functions of the plasma potential and the mean electron energy once and before the solution of the model. The model results are validated by a comparison with spatially resolved (on axial and radial distance) measurements of electron density, electron temperature, and plasma potential. Both the calculation of the ion mobility by the MC model and the consideration of the three-temperature EEDF are critical for the accuracy of the model results. The very good agreement of the model results with the measurements and the low computational cost in combination with the flexibility of the code utilized for the numerical solution manifest the potential of the hybrid plasma model for the simulation of low pressure ICPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.