Abstract
Isomorphism discernment of graphs is an important and complicate problem. The problem is vital for graph theory based kinematic structures enumeration. To solve the problem, a Genetic Algorithm (GA) model and a Hopfield Neural Networks (HNNs) model are developed respectively, and some operators are improved to prevent premature convergence. By a comparative study, the advantages and limitations of the two approaches for graph isomorphism problem are discussed. Based on above, a hybrid Neural-Genetic algorithm is proposed. Numerical experiments demonstrate the performance of the hybrid algorithm is more successful compared with the approach applying GA or HNN simply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Manufacturing Technology and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.