Abstract

ABSTRACT The accurate prediction of population distribution is crucial for numerous applications, from urban planning to epidemiological modelling. Using one-week data collected from open and multiple sources, including telecommunication activity, weather, point of interest, buildings, roads, and land use in Milan, Italy, we develop a hybrid method combining cellular automata (CA) and long short-term memory (LSTM) to predict population distribution with fine temporal and spatial granularity. Specifically, the convolutional autoencoder and LightGBM are applied to identify missing building types based on the pedestrian shed. The LSTM learns the transition rules of CA and Shapley additive explanations value is used for variable importance analysis. Results demonstrate that the combination of convolutional autoencoder and LightGBM is effective in building type prediction. The proposed model for population distribution prediction outperforms LSTM, the combination of CA and neural network, and the combination of CA and LightGBM by at least 5–10%. A variable importance analysis reveals that temporal variables are the most significant for prediction, followed by spatial and natural variables. The order of hour, housing-related variables, and types of precipitation are the most important variables in each category.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.