Abstract

We describe the Open University team’s submission to the 2011 i2b2/VA/Cincinnati Medical Natural Language Processing Challenge, Track 2 Shared Task for sentiment analysis in suicide notes. This Shared Task focused on the development of automatic systems that identify, at the sentence level, affective text of 15 specific emotions from suicide notes. We propose a hybrid model that incorporates a number of natural language processing techniques, including lexicon-based keyword spotting, CRF-based emotion cue identification, and machine learning-based emotion classification. The results generated by different techniques are integrated using different vote-based merging strategies. The automated system performed well against the manually-annotated gold standard, and achieved encouraging results with a micro-averaged F-measure score of 61.39% in textual emotion recognition, which was ranked 1st place out of 24 participant teams in this challenge. The results demonstrate that effective emotion recognition by an automated system is possible when a large annotated corpus is available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.