Abstract

Future power systems are expected to depend more on ICT for essential grid services such as voltage and frequency control, increasing the interdependencies between both systems. Therefore, disturbances from one system could propagate and impact the other, degrading the state of the interconnected system. This paper proposes a formalised hybrid model for analysing the impact and propagation of disturbances in a cyber–physical energy system. The states representing the performance of ICT-enabled grid services are modelled using a finite-state automaton. The impact of power system operational decisions in response to disturbances using these grid services are modelled using an optimisation considering situational awareness. The output from both models is used as input to a hybrid automaton that determines the state of the overall cyber–physical energy system. The model is verified by a proof of concept using state estimation and congestion management as exemplary grid services.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.