Abstract

A hybrid model combining hydrodynamic and biological effects is developed to describe the cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor with wire-mesh draft tubes. The hydrodynamic part is essentially a modified tanks-in-series model whose parameters are determined using a tracer response method. The modified tanks-in-series model is based on that the materials in the riser and downcomer are exchangeable across the wire-mesh draft tube. In addition, the effect of oxygen transfer is also taken into consideration for the tanks-in-series model. An artificial neural network (ANN) model based on the data of a batch cultivation in a stirred tank reactor combined with system equations is utilized as the biological part. Simulation is carried out to demonstrate that the proposed hybrid model represents the cultivation system very well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call