Abstract

To improve the overall control performance of nonlinear systems, an optimal control method, based on the framework of hybrid systems, is proposed. Firstly, the nonlinear systems are approximated by a number of piecewise affine models which are produced by the nonlinear systems at the specified operating points, then the piecewise affine models are synthesized under the framework of hybrid systems, and an associated optimal control problem, in which decision variables involve not only admissible continuous control but also the scheduling of subsystem modes, is established. Secondly, the optimal control problem is transformed into a MIQP problem by discretization over the whole state space and admissible control space to obtain the numerical optimal solution. For speeding up the algorithm, the simultaneous method on finite elements is used to lower the dimensions of the MIQP problem. Consequently, a hybrid model-based MPC for nonlinear systems is designed, and the adverse effects of model mismatch resulted from simultaneous method is weakened by MPC strategy. Simulations and comparisons with soft-switching method, hard-switching method and MLD method, confirm that a satisfactory performance can be obtained using the presented approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.