Abstract

An effective way to improve distribution system reliability is to place switches and protective equipment in the optimal location. Commonly, in the placement problem, the use of equipment in the designated location is assumed to be possible. But in practice, to establish protection coordination between the equipment, it is necessary to remove or relocate some of the equipment. This paper aims to increase distribution companies' profits and reduce customer interruption costs through a feasible solution. A new hybrid method for equipment placement has been proposed that simultaneously solves the protection coordination problem. While determining the optimal number and location of reclosers and sectionalizers, the proposed method ensures protection coordination between equipment (new and existing devices). Furthermore, to achieve a more realistic and accurate model, factors such as equipment malfunction, fault types (transient and permanent), and the relationship between these faults have been carefully considered to formulate the proposed method. In this method, to solve the optimization problems related to equipment placement and protection coordination, genetic algorithm, and linear programming in MATLAB software have been used, respectively. A real-life distribution network has been utilized to evaluate the proposed method, and the results show the capability and robustness of this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call