Abstract

Automated and accurate classification of MR brain images is of importance for the analysis and interpretation of these images and many methods have been proposed. In this paper, we present a neural network (NN) based method to classify a given MR brain image as normal or abnormal. This method first employs wavelet transform to extract features from images, and then applies the technique of principle component analysis (PCA) to reduce the dimensions of features. The reduced features are sent to a back propagation (BP) NN, with which scaled conjugate gradient (SCG) is adopted to find the optimal weights of the NN. We applied this method on 66 images (18 normal, 48 abnormal). The classification accuracies on both training and test images are 100%, and the computation time per image is only 0.0451 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.