Abstract
This article proposes a novel hybrid finite-difference time-domain (FDTD) method to calculate the transient responses of the transmission line network based on the leapfrog alternating direction implicit FDTD (leapfrog ADI-FDTD) algorithm and the traditional FDTD method. The proposed hybrid method can be implemented by dividing the transmission line network into two parts that are the interconnects part in a printed circuit board solved by the leapfrog ADI-FDTD and the cable part solved by the traditional FDTD with different mesh sizes and the same time step, respectively. In addition, some boundary conditions should be introduced based on the modified nodal approach and Kirchhoff's law at the terminals of the transmission line network. The numerical results show that the proposed hybrid method is in good agreement with HSPICE. Especially, it is more efficient and applicative for the multiscale transmission line network problems due to the use of the implicit FDTD solver with unconditional stability compared with the traditional FDTD method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal on Multiscale and Multiphysics Computational Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.