Abstract

Crew scheduling problem is the problem of assigning crew members to the flights so that total cost is minimized while regulatory and legal restrictions are satisfied. The crew scheduling is an NP-hard constrained combinatorial optimization problem and hence, it cannot be exactly solved in a reasonable computational time. This paper presents a particle swarm optimization (PSO) algorithm synchronized with a local search heuristic for solving the crew scheduling problem. Recent studies use genetic algorithm (GA) or ant colony optimization (ACO) to solve large scale crew scheduling problems. Furthermore, two other hybrid algorithms based on GA and ACO algorithms have been developed to solve the problem. Computational results show the effectiveness and superiority of the proposed hybrid PSO algorithm over other algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.