Abstract

The spin-boson model is a simplified Hamiltonian often used to study non-adiabatic dynamics in large condensed phase systems, even though it has not been solved in a fully analytic fashion. Herein, we present an exact analytic expression for the dynamics of the spin-boson model in the infinitely slow-bath limit and generalize it to approximate dynamics for faster baths. We achieve the latter by developing a hybrid approach that combines the exact slow-bath result with the popular non-interacting blip approximation (NIBA) method to generate a memory kernel that is formally exact to second-order in the diabatic coupling but also contains higher-order contributions approximated from the second-order term alone. This kernel has the same computational complexity as the NIBA, but is found to yield dramatically superior dynamics in regimes where the NIBA breaks down-such as systems with large diabatic coupling or energy bias. This indicates that this hybrid approach could be used to cheaply incorporate higher-order effects into second-order methods and could potentially be generalized to develop alternate kernel resummation schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.