Abstract

A MWCNT@MoSe2 nanorod hybrid material was synthesized by a hydrothermal method and used as an adsorbent for trace levels of Pb(II) and Cu(II). The material was characterized by Raman spectroscopy, XRD, SEM, SEM-EDX, SEM-mapping and BET methods. The hybrid material is demonstrated to be a viable sorbent for ultrasound-assisted solid phase extraction of Pb(II) and Cu(II) at pH5.5. Following desorption with 3 M HNO3, the two elements were quantified by FAAS. Key parameters affecting the extraction efficiency, including eluent conditions, amount of adsorbent, sample volume were optimized. No significant interference by other ions is observed. The accuracy of the method was evaluated by the analysis of the certified reference materials TMDA-53.3 (lake water) and SPS-WW2 (waste water level 2). The recoveries were in good agreement with certified values. The method was successfully applied to the extraction/preconcentration of Pb(II) and Cu(II) in different real samples. Graphical abstract A hybrid material of type MWCNT@MoSe2 was synthesized, characterized, and used as adsorbent for Pb(II) and Cu(II). Key parameters affecting the extraction efficiency, including eluent conditions, amount of adsorbent, sample volume were optimized. The method was applied to the extraction of analytes in water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call