Abstract

During the last two decades, the IEEE 8201.11 family has multiplied data rate transmissions in wireless local area networks (WLANs). This progress is based on the adoption of new technologies concerning physical layer (PHY), combined with the enhancements in the medium access control (MAC) layer. Radio over Fiber (RoF) is a technology which can further extend this progress, combining the benefits of optical fiber and wireless networks. The current IEEE 802.11 MAC protocol is contention based, which leads to low utilization of the RoF PHY data rate and on the other hand cannot handle the effects of long propagation delays in RoF networks. In this paper, we present a new Hybrid Link Time Division Multiple Access (HL-TDMA) MAC protocol which addresses the above shortcomings and enhances the performance of both conventional and RoF WLANs. Then, through simulation, we evaluate the performance of the proposed protocol, which is shown to be superior to relevant RoF WLAN protocols in the literature.

Highlights

  • The IEEE 802.11 standards have simplified the way that billions of users and devices connect to the internet

  • This is explained by the interframe space (IFS) mechanism collapse and agrees with the value given by Equation (21)

  • By using the above medium access rule, the ACK frame from central station (CS) is protected from a collision with a data frame transmission from another mobile station (MS) and eliminating the IFS mechanism collapse shown in a Radio over Fiber (RoF) wireless local area networks (WLANs) using the existing medium access control (MAC) protocol

Read more

Summary

A Hybrid Link-TDMA MAC Protocol for Conventional and Radio over Fiber WLANs

During the last two decades, the IEEE 8201.11 family has multiplied data rate transmissions in wireless local area networks (WLANs). This progress is based on the adoption of new technologies concerning physical layer (PHY), combined with the enhancements in the medium access control (MAC) layer. Radio over Fiber (RoF) is a technology which can further extend this progress, combining the benefits of optical fiber and wireless networks. The current IEEE 802.11 MAC protocol is contention based, which leads to low utilization of the RoF PHY data rate and on the other hand cannot handle the effects of long propagation delays in RoF networks.

Introduction
Related Work
Hybrid Link-TDMA mac Protocol
Performance Evaluation
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.